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Exact solutions for steady bubbles in a
Hele-Shaw cell with rectangular geometry
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Exact solutions are presented for an arbitrary number of steadily moving bubbles in
a Hele-Shaw channel when surface tension is neglected. According to the symmetry
displayed by the bubbles, the solutions are classified into two groups: (i) solutions
where the bubbles are symmetrical about the channel centreline and (ii) solutions in
which the bubbles have fore-and-aft symmetry. The general solutions are expressed in
integral form but in some special cases analytic solutions in terms of elliptic integrals
are found. The possible relevance of these exact solutions to experiments is also
briefly discussed.

1. Introduction
The motion of the interface between two viscous fluids in a Hele-Shaw cell,

where the fluids are confined between two closely spaced flat plates, has attracted
considerable attention in the last twenty years and there is now a rather large body
of literature on the subject.† A great deal of this research has been motivated, in part,
by the mathematical analogies between the Hele-Shaw system and other important
moving-boundary problems, such as dendritic crystal growth and direct solidification
(see, for example, Pelcé 1988). Because it is a system where controlled experiments are
relatively easy to perform and which is also amenable to mathematical investigation,
the Hele-Shaw cell has become the ‘laboratory’ of choice to study the dynamics of
interfaces between two viscous fluids.

From a theoretical standpoint, the problem of interfacial dynamics in a Hele-Shaw
cell is particularly tractable when surface tension effects are neglected, and several
exact solutions have been found in this case for both steady and time-dependent
flows. Exact solutions for the problem were first obtained by Saffman & Taylor
(1958) for a steadily moving finger, and subsequently Taylor & Saffman (1959) found
solutions for a single symmetrical bubble as well as for an asymmetrical finger. The
single bubble solution was later extended by Tanveer (1987) to include non-symmetric
bubbles. Exact solutions for a stream of bubbles have been reported by Burgess &
Tanveer (1991). An exact solution for a non-symmetric finger in a Hele-Shaw cell tilted
sideways has also been obtained by Brener, Levine & Tu (1991). A rotation invariance
for steady Hele-Shaw flows has recently been discovered by Vasconcelos (1993a) and
Tian & Vasconcelos (1993). This property was then used by the present author to
obtain several new exact solutions, such as a periodic solution with an arbitrary
number of bubbles per unit cell (Vasconcelos 1994) and solutions for multiple fingers

† A comprehensive bibliography on Hele-Shaw flows up to 1998 can be found at
http://maths.ox.ac.uk/∼howison/Hele-Shaw.
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(Vasconcelos 1998, 2001) as well as for a finger with an arbitrary number of bubbles
ahead of the finger tip (Vasconcelos 1999). More recently, a preliminary description
of an analytic solution in terms of elliptic integrals for two bubbles and for a finger
with a bubble at the tip has also been given by Vasconcelos (2000).

Time-dependent solutions also date back to early work by Saffman (1959) and since
then many other solutions in the form of the so-called ‘pole dynamics’ have been
found (see for example Howison 1992 for a review). Most of these time-dependent
solutions with zero surface tension develop a cusp in finite time but recently Dawson
& Mineev-Weinstein (1994) and Baker, Siegel & Tanveer (1995) have studied a class
of solutions that remain regular for all times and that asymptotically approach the
multifinger solution mentioned above. Self-similar solutions for an expanding finger
in a wedge geometry have also been obtained by Ben Amar (1991a, b).

For non-zero surface tension, on the other hand, the problem becomes quite hard to
tackle analytically and there is so far only one non-trivial exact solution (Vasconcelos
& Kadanoff 1991; Vasconcelos 1993b), which is mainly of academic interest for it
involves somewhat extraneous boundary conditions. Notwithstanding this difficulty,
the effect of a small amount of surface tension has been extensively studied in
connection with the so-called selection problem. This problem refers to the fact that
exact solutions at zero surface tension are usually degenerate in the sense that fixing
the physical parameters of the solution (e.g. the bubble size) does not determine
the interface velocity. The selection problem was first noted by Saffman & Taylor
(1958) who found in their experiments that the finger with relative width λ = 1/2
was selected out of the one-parameter family of analytic solutions with zero surface
tension. This problem is now fairly well understood theoretically: asymptotics beyond
all orders predicts that for a given value of surface tension λ has a discrete set of
values, all of which converge to λ = 1/2 as surface tension approaches zero; for
reviews, see e.g. Kessler, Koplik & Levine (1988), Pelcé (1988) and Tanveer (1992).
A similar solvability analysis has been carried out, for example, in the case of a
single bubble (Tanveer 1986). An alternative selection theory for the Saffman–Taylor
finger based solely on zero surface tension solutions has recently been proposed by
Mineev-Weinstein (1998).

The problem of a finger with a small bubble at the tip has also been studied
experimentally by Couder, Gérard & Rabaud (1986) and Rabaud, Couder & Gérard
(1988). Here it was found that owing to the presence of the bubble the finger was
considerably narrower than the usual Saffman–Taylor finger. A similar effect has
been observed for bubbles: when a small bubble attaches to the nose of a larger
bubble, the larger bubble becomes more elongated and its velocity increases (Ikeda
& Maxworthy 1990). This narrowing effect induced by the small bubble has not yet
been completely understood. Hong & Langer (1987) and Hong & Family (1988) have
proposed an approximate selection theory for a finger with a small bubble at the tip
and for a large bubble with a small one at the the nose, respectively. This theory,
which is based on the solutions for a pure finger and a single bubble at zero surface
tension, is somewhat unsatisfactory in that the effect of the small bubble is taken into
account through a rather unphysical condition, namely, a cusp at the leading front
of the perturbed interface. A more detailed (but still approximate) analysis of the
selection problem for a finger with a bubble was performed by Combescot & Dombre
(1989). These authors computed an approximate solution at zero surface tension for
the case of a small bubble far ahead of the finger, and then showed that in the limit
of vanishingly small surface tension fingers with λ < 1/2 were possible.

In the present paper, we report new exact solutions for an arbitrary number N
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of bubbles moving with a constant velocity in a Hele-Shaw channel when surface
tension is neglected. According to their symmetry, these solutions are divided into two
classes: (i) solutions where the bubbles are symmetric about the channel centreline
and (ii) solutions in which the bubbles have fore-and-aft symmetry. Our solutions are
constructed using conformal mappings and here again use is made of the rotation
invariance displayed by steady Hele-Shaw flows. The general solutions are expressed
in integral form but we anticipate that analytic solutions in terms of elliptic integrals
are found in some special cases that include a single asymmetrical bubble and a pair
of centreline-symmetric bubbles.

We emphasize here that although the solutions reported in the present paper are for
the idealized case of zero surface tension they are nevertheless of practical relevance.
For example, some of the many-bubble solutions described below resemble actual
shapes observed by Maxworthy (1986) in his experiment on rising bubbles in a Hele-
Shaw cell. Furthermore, our two-bubble solution has been shown (Vasconcelos 2000)
to be in good agreement with shapes observed in the experiments conducted by Ikeda
& Maxworthy (1990) on the motion of a large bubble with a small one attached to
its nose. Moreover, exact solutions at zero surface tension are of great importance in
connection with the selection problem discussed above. For example, a more rigorous
solvability analysis for two bubbles (as well as for a finger with a bubble) could in
principle be carried out having as starting point our family of analytic solutions for
this case. In spite of the great interest in this selection problem, issues concerning the
effect of surface tension are however beyond the scope of the present paper.

The paper is organized as follows. In § 2 the problem for N steady bubbles in a
Hele-Shaw channel with zero surface tension is mathematically formulated. In § 3 we
present our exact solutions for the case where the bubbles are symmetrical about the
channel centreline. In particular, we obtain in § 3.3 an analytic solution in terms of
elliptic integrals for the case of two unequal bubbles in a Hele-Shaw cell. In § 4 we
discuss the case in which the bubbles have fore-and-aft symmetry. Here we also find
an exact solution for a single bubble in terms of elliptic integrals. Our conclusions
and main results are summarized in § 5.

2. Mathematical formulation

2.1. Equations of motion

We consider the problem of N bubbles moving with a constant velocity U in the
x-direction in a rectangular Hele-Shaw cell of width 2a, where the fluid velocity
at infinity is equal to V . In order to render the problem analytically tractable we
shall adopt, as usual, some simplifying assumptions. First, we will assume that the
fluid inside the bubbles (say, air) has negligible viscosity so that the pressure inside
a bubble will be taken as constant. Secondly, surface tension will be neglected and
hence the viscous-fluid pressure will have a constant value along the bubble surface.
Thirdly, we shall neglect three-dimensional effects due to the thin film between the
bubbles and the plates. Fourthly, we will assume that the cell is horizontally placed
so that gravity plays no rôle. (The case of a cell tilted upward, as used, for example,
in the experiments by Maxworthy (1986) and Ikeda & Maxworthy (1990), can be
transformed into a horizontal setup by a suitable change of variables; see Saffman
& Taylor (1958) for details.) Finally, we shall concern ourselves here with situations
where the bubbles display either one of the following two symmetries: (i) symmetry
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Figure 1. Multiple bubbles in a Hele-Shaw channel: (a) bubbles with centreline symmetry
and (b) bubbles with fore-and-aft symmetry.

about the channel centreline (figure 1a) or (ii) fore-and-aft symmetry, that is, symmetry
about an axis perpendicular to the centreline (figure 1b).

The velocity v(x, y), averaged across the gap, for a viscous fluid in a Hele-Shaw cell
is governed by the equations

v = ∇φ, (2.1)

∇ · v = ∇2φ = 0, (2.2)

where the velocity potential φ(x, y) is given by

φ = − b2

12µ
p. (2.3)

Here b is the gap between the cell plates, µ is the viscosity, and p is the fluid pressure.
Let us now denote by Ck the interface corresponding to the kth bubble, where

k = 1, 2, . . . , N, and take the channel walls to be at y = ±a. In order to define
the problem completely we need to specify the boundary conditions to be satisfied
by the velocity potential φ(x, y) on Ck , at y = ±a, and at infinity. Here, however,
it is more convenient to work in a reference frame moving with the bubbles and
introduce dimensionless quantities. Following Saffman & Taylor (1958), we thus
consider dimensionless variables defined by

x′ = (x−Ut)/a, y′ = y/a, (2.4)

φ′ =
φ−Ux

(U − V )a
, ψ′ =

ψ −Uy
(U − V )a

, (2.5)

where ψ(x, y) is the associated stream function. We now have that φ′ and ψ′ must
satisfy the conditions

ψ′ = ∓1 on y′ = ±1, (2.6)

ψ′ = ψ′k and φ′ = −Ux′ + φ′k on Ck, (2.7)

φ′ ≈ −x′ and ψ′ ≈ −y′ as |x′| → ∞, (2.8)

where ψ′k and φ′k are constants to be specified later and the dimensionless bubble
velocity U is given by

U = U/(U − V ). (2.9)

The physical meaning of the conditions above should be evident: (2.6) is the condition
that the walls be streamlines of the flow; the first condition in (2.7) says that the
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interfaces Ck when viewed in the moving frame are also streamlines, while the second
condition in (2.7) states that the pressure p and hence φ is constant along Ck;
and finally (2.8) is merely a restatement of the fact that at infinity the fluid has a
constant velocity V in the lab frame and thus a dimensionless unity velocity in the
moving frame. Henceforth we shall drop the prime notation with the understanding
that we shall be working in the reference frame moving with the bubbles and using
dimensionless quantities, unless noted otherwise.

As is well known, the problem of potential flows in two dimensions can be also
formulated in terms of the complex potential W (z) = φ + iψ, where z = x + iy.
The function W (z) must then be analytic in the viscous-fluid region and satisfy the
appropriate boundary conditions:

ImW = ∓1 on y = ±1, (2.10)

W = −Ux+ φk + iψk on Ck, k = 1, . . . , N, (2.11)

W ≈ −z as |x| → ∞, (2.12)

as follows from (2.6)–(2.8). Here ImW denotes the imaginary part of W .
The complex potential W (z) can alternatively be seen as a conformal mapping

from the fluid region in the z-plane onto the corresponding flow domain in the
W -plane. Now, the existence of either one of the two symmetries mentioned above
simplifies considerably the problem because the relevant flow domains can be reduced
to simply connected regions. For instance, in the case of centreline symmetry one needs
to consider the problem only in one half, say the upper half, of the original channel,
as indicated in figure 2(a). In this case we have ψk = 0 for all k, since the bubbles
all lie on the same streamline ψ = 0, and φk < φj for k > j, reflecting the fact the
bubbles farther upstream are at higher pressures. The corresponding flow domain in
the W -plane for this symmetry is shown in figure 2(b). Similarly, in the case of fore-
and-aft symmetry one can reduce the problem to the right-hand side of the channel,
as indicated in figure 3(a). Now φk = 0 for all k, since the bubbles are at the same
pressure, which we take to be zero, and the ψk are all different for the bubbles lie on
different streamlines. The respective domain in the W -plane is shown in figure 3(b).

2.2. The rotated problem

An interesting rotation invariance for steady Hele-Shaw flows has recently been
discovered by Tian & Vasconcelos (1993). These authors showed that if a curve C
is a solution for a bubble moving with constant velocity U in the x-direction in an
unbounded Hele-Shaw cell, then the curve C̃ obtained from a rotation of C about the
origin by an angle α is also a solution with the same velocity U. In the present paper
we shall make use of their result to construct exact solutions for N steady bubbles in
a Hele-Shaw channel. Here however we will adopt a viewpoint slightly different from
that originally used by Tian & Vasconcelos (1993). More specifically, we will view
the new rotated solution as one in which the bubble itself was kept fixed while its
velocity has been rotated by an angle α. In order to make the paper self-contained we
shall quote below the main result of Tian & Vasconcelos (1993), albeit in a slightly
modified form to accord with our viewpoint. The interested reader is referred to their
original paper for details of the proof. (For ease of comparison with their results, we
shall use dimensional variables in the next paragraph but will afterward return to our
dimensionless quantities.)

Suppose that W (z) is the complex potential (in the moving frame) for the problem
of a bubble C moving with a constant velocity U = (U, 0) in an unbounded Hele-
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Figure 2. The flow geometry for bubbles with centreline symmetry: (a) the z-plane,
(b) the W -plane, (c) the W̃ -plane, and (d) the upper half-ζ-plane.

Shaw flow where the fluid has a uniform velocity V = (V , 0) at infinity and surface
tension has been neglected. Then the complex potential

W̃ (z) = eiαW (z) + iU sin α z (2.13)

is also a solution for a Hele-Shaw flow where the bubble C moves with the same
speed U but now in a direction making an angle α with the original velocity, that is,
the new bubble velocity U ′ is given by

U ′ = (U cos α,U sin α), (2.14)

whereas the fluid velocity V ′ at infinity is

V ′ = (V cos α, (U − V ) sin α). (2.15)

Here W̃ (z) corresponds to the complex potential in the moving frame for the rotated
problem. The result above holds in general so long as the original complex potential
W (z) is defined on (or can be extended to) an unbounded Hele-Shaw cell (Tian &
Vasconcelos 1993). It therefore applies to steady bubbles in a Hele-Shaw channel,
since in this case the complex potential W (z) can be trivially extended to the entire
z-plane by succesive Schwarz reflections.

Of special interest to us here is the solution corresponding to a rotation by 90◦,
where the bubbles move with the same velocity U as in the original solution but now
in the y-direction. In this case the region occupied by the fluid in the rotated solution
is exactly the same as that for the original problem, the main difference being that
now the channel walls become equipotentials of the flow. Setting α = π/2 in (2.13) we
obtain for the rotated complex potential W̃ (z):

W̃ (z) = i[W (z) +Uz], (2.16)

where we have switched back to dimensionless quantities. From (2.10)–(2.12) and
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Figure 3. The flow geometry for bubbles with fore-and-aft symmetry: (a) the z-plane,
(b) the W -plane, (c) the W̃ -plane, and (d) the upper half-ζ-plane.

(2.16) it then follows that W̃ (z) satisfies the following boundary conditions:

Re W̃ = ∓(U− 1) on y = ±1, (2.17)

W̃ = −Uy − ψk + iφk on Ck, k = 0, 1, . . . , N, (2.18)

W̃ ≈ i(U− 1)z as |x| → ∞, (2.19)

where Re W̃ denotes the real part of W̃ . In figures 2(c) and 3(c) we show the
respective flow domains in the W̃ -plane for the two symmetries under consideration
in this paper.

2.3. Conformal mapping formulation

We now introduce a conformal mapping formulation that will allow us to construct
exact solutions for the problem of N steady bubbles in a Hele-Shaw channel. At
this stage, however, we shall present only the general aspects of the formalism that
are valid for both symmetries considered in the present paper. Discussion of specific
solutions for each symmetry will be deferred to the next sections.

First consider the conformal mapping z = f(ζ) from the upper half-ζ-plane onto
the fluid domain in the z-plane; see figures 2(d) and 3(d). Here the two intervals
Re ζ = 0, |ζ| > 1 are mapped onto the channel walls, while the bubbles Ck are the
image under f(ζ) of the intervals Ik on the real ζ axis defined by

Ik ≡ (ν2k−1, ν2k), k = 1, . . . , N, (2.20)

with −1 < ν1 < ν2 < . . . < ν2N < 1. Now let W = Φ(ζ) and W̃ = Σ(ζ) be the
conformal mappings from the upper half-ζ-plane onto the flow domains in the W -
and W̃ -planes, respectively. From (2.16) it then follows that the mapping function
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f(ζ) can be written as

f(ζ) = − 1

U [Φ(ζ) + iΣ(ζ)]. (2.21)

From this equation and the fact that both Φ(ζ) and Σ(ζ) have constant imaginary
parts for ζ = s ∈ Ik , it then follows that the bubble Ck is given by the following
parametric equations:

xk(s) =
1

U [φk −ReΦ(s)], (2.22)

yk(s) = − 1

U [ψk + ReΣ(s)], (2.23)

where ψk and φk are the imaginary parts of Φ(s) and Σ(s) for s ∈ Ik , respectively.
(Recall that ψk = 0 for centreline symmetry, whereas φk = 0 in the case of fore-and-aft
symmetry.)

Summarizing our procedure so far, we have reduced our original free-boundary
problem to the much simpler problem of obtaining two conformal mappings, namely,
W = Φ(ζ) and W̃ = Σ(ζ), from the upper half-ζ-plane onto respective rectangular
domains in the W - and W̃ -planes. As we will see shortly, such mappings can be easily
obtained from the Schwarz–Christoffel formula (Carrier, Krook & Pearson 1983). It
should also be noted that in previous solutions that use conformal mapping (see e.g.
Tanveer 1987), once the mapping W = Φ(ζ) from the chosen domain in the ζ-plane to
the flow domain in the W -plane is known, then the mapping z = f(ζ) is constructed
explicitly so as to satisfy the appropriate boundary conditions. Our method has
the advantage of making this step rather straighforward by identifying the function
W̃ (z) = i[W (z) +Uz] with the complex potential for the rotated problem, so that
solving for the mapping W̃ = Σ(ζ) then completes the solution. Before presenting our
specific solutions, however, a few comments regarding the case U = 2 are in order.

Solutions with U = 2 are special in the sense that solutions for any U > 1 can be
generated by a proper rescaling of the former solutions. This property was first noted
by Millar (1992) in the context of the Taylor–Saffman solution for a single bubble
and later shown by Vasconcelos (1994) to hold for any number of steady bubbles in
a Hele-Shaw channel. Since we shall make use of this property in what follows, it is
desirable to outline its proof here. First, notice that the flow domain in the W -plane
does not depend on the bubble velocity U, see figures 2(b) and 3(b), and hence the
mapping function Φ(ζ) will have no dependence on U. The mapping function Σ(ζ),
on the other hand, does depend on U but in a somewhat trivial manner since the
domain in the W̃ -plane for arbitrary U can be obtained from a rescaling of the
domain for U = 2; see figures 2(c) and 3(c). We thus have

ΦU(ζ) = Φ2(ζ), (2.24)

ΣU(ζ) = (U− 1)Σ2(ζ), (2.25)

where we have used subscripts to indicate explicitly the dependence on the velocity U.
Let us now denote by z0

k (s) = x0
k(s) + iy0

k (s) the solution for the kth bubble with U = 2
for a given set of parameters {νi}. Using (2.24) and (2.25) in connection with (2.22)
and (2.23), one readily finds that the solution zk(s) = xk(s) + iyk(s) for the bubble Ck
moving with velocity U can be written as

xk(s) = ρφ0
k + (1− ρ)x0

k(s), (2.26)

yk(s) = ρψk + (1 + ρ)y0
k (s), (2.27)
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where ρ = 1 − 2/U and φ0
k = [φk]U=2. This result thus shows that solutions for

any U > 1 can be obtained (up to a rigid translation) by a mere rescaling of the
solution with U = 2. For 1 < U < 2 (i.e. U > 2V ) such a rescaling corresponds to an
expansion of the x-coordinate and a contraction of the y-coordinate, while for U > 2
(i.e. V < U < 2V ) the reverse occurs. In view of this property, we shall consider only
the case U = 2 in the remainder of the paper.

3. Bubbles with centreline symmetry
In this section we present exact solutions for the case shown in figure 2 in which the

bubbles are symmetrical about the channel centreline. As discussed in the preceding
section, in order to construct exact solutions for the problem we need to obtain the
corresponding conformal mappings W = Φ(ζ) and W̃ = Σ(ζ). In what follows, we
will first give a general solution in integral form for an arbitrary number N of bubbles
and then proceed to discuss the cases N = 1 and N = 2 for which there exist analytic
solutions for the bubble shapes.

3.1. General solution for multiple bubbles

We begin by recalling that in the case of centreline symmetry the flow domain in the
W -plane is simply the strip −1 < ψ < 0; see figure 2(b). The conformal mapping
from the upper half-ζ-plane onto such a strip is effected by the function

Φ(ζ) = −2

π
tanh−1 ζ, (3.1)

where we have omitted for brevity an additive real-valued constant. (This constant
is chosen so as to fix the zero of the velocity potential φ.) Now, in the W̃ -plane
the domain consists of the strip −1 < φ̃ < 0 with N horizontal slits, as seen in
figure 2(c) for U = 2. This domain can be viewed as a degenerate polygon and so
the corresponding mapping W̃ = Σ(ζ) can be obtained from the Schwarz–Christoffel
formula (Carrier et al. 1983). One then finds

Σ(ζ) = Σ0 +
iC

π

∫ ζ

ζ0

∏N
j=1(ζ − γj)

(ζ2 − 1)
∏2N

j=1

(
ζ − νj)1/2

dζ, (3.2)

where C is a real-valued constant and γj ∈ Ij , with Ij as defined in (2.20). The
initial point ζ0 in (3.2) can be chosen arbitrarily and the constant Σ0 is then adjusted
to fix the origin in the W̃ -plane. Here we have chosen to map ζ = ±1 to W̃ = ±∞,
as shown in figure 2. In view of the third degree of freedom of Riemann’s mapping
theorem one could also fix the value of one given νj . At this stage, it is best however
to proceed with this ‘degeneracy’ and consider the νj as 2N free parameters (even
though only 2N − 1 of them are actually independent).

For calculation purposes it is convenient to expand the numerator in (3.2) and so
we write

Σ(ζ) = Σ0 +
2i

π

∫ ζ

ζ0

∑N
j=0 ajζ

j

(1− ζ2)
∏2N

j=1

(
ζ − νj)1/2

dζ, (3.3)

where the aj are real-valued coefficients. (The aj could of course be expressed in terms
of the γj but we will not present this detail here for we prefer to work directly with
the mapping (3.3).) For a given set of parameters νj the coefficients aj are determined
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as follows. First, let us define the quantities Ijk

Ijk =

∫ ν2k

ν2k−1

tj

(1− t2)∏2N
i=1 |t− νi|1/2

dt, (3.4)

for j = 0, 1, . . . , N and k = 1, 2, . . . , N. We then note that because of the centreline
symmetry the mapping function Σ(ζ) must satisfy the condition Σ(ν2k−1) = Σ(νk),
which in view of (3.3) and (3.4) yields

N∑
j=0

ajIjk = 0, k = 1, 2, . . . , N. (3.5)

Furthermore, the real part of Σ(ζ) must jump by −1 as ζ crosses the pole ζ = 1 from
left to right (see figure 2), which implies in turn that

N∑
j=0

aj =

2N∏
k=1

(1− νk)1/2. (3.6)

Relations (3.5) and (3.6) thus give a system of N + 1 linear equations that can be
easily solved for the N + 1 coefficients aj , once the set of 2N parameters {νi} is given.

Now that the two mapping functions Φ(ζ) and Σ(ζ) have been determined, it
becomes a trivial matter to find the bubble shapes. From (2.22), (2.23), (3.1) and (3.3),
it follows that the interface Ck , for k = 1, . . . , N, is given by the following parametric
equations:

xk(s) = xk0 +
1

π
tanh−1 s, (3.7)

yk(s) =
(−1)N+k+1

π

∫ s

ν2k−1

∑N
j=0 ajt

j

(1− t2)∏2N
j=1 |t− νj |1/2

dt, (3.8)

where s ∈ Ik and

xk0 =
(−1)N

π

k−1∑
l=1

(−1)l
∫ ν2l+1

ν2l

∑N
j=0 ajt

j

(1− t2)∏2N
j=1 |t− νj |1/2

dt. (3.9)

In (3.7) an overall additive constant has been omitted for brevity. (We remark
parenthetically that the several factors of −1 in (3.8) and (3.9) arise from the crossing
of two square-root branch points as ζ moves from one interval Ik to the next.)
Expressions (3.7)–(3.9) thus give a general solution for the problem of N steadily
moving bubbles with centreline symmetry. In the formulation above, in order to
specify a solution completely one must provide 2N values for the parameters νj . The
solutions could alternatively be specified if we prescribed the bubble areas and their
separation, from which the values of the νj could in principle be determined (with the
value of one given νj being chosen arbitrarily). For convenience, we prefer however
to work directly with the νj .

In the special cases of N = 1 and N = 2, the solutions above can can be written in
closed form and will be discussed separately in the next two subsections. For N > 2,
on the other hand, one must resort to numerical integration in order to compute the
interface shapes. An example solution for N = 3 with ν1 = −0.95, ν2 = 0.65, ν3 = −0.6,
ν4 = −0.2, ν5 = 0.2 and ν6 = 0.4 is shown in figure 4. Note, in particular, that if the
parameters νj are chosen in such way that the intervals Ik are symmetrically located
about the point ζ = 0, then the overall solution will be symmetrical about the y-axis
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Figure 4. Solution for three unequal bubbles with centerline symmetry. Here the parameters are
ν1 = −0.95, ν2 = 0.65, ν3 = −0.6, ν4 = −0.2, ν5 = 0.2 and ν6 = 0.4.
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Figure 5. Solution for three bubbles with both the centreline and downstream–upstream
symmetries. Here ν6 = −ν1 = 0.9, ν5 = −ν2 = 0.7 and ν4 = −ν3 = 0.2.

and the flow will accordingly have a downstream–upstream symmetry. In figure 5 we
show a solution for this case with N = 3.

3.2. The Taylor–Saffman bubble

In the case that N = 1 our general solution discussed above should reproduce the
solution originally obtained by Taylor & Saffman (1959) for a single symmetrical
bubble in a Hele-Shaw channel. For completeness, and as a test of our formulation,
we will show below that the Taylor–Saffman bubble can indeed be obtained as a
special case of the general solution given in (3.7) and (3.8).

First we note that setting N = k = 1 in (3.9) gives x0 = 0 so that (3.7) yields simply

x(s) =
1

π
tanh−1 s. (3.10)

Next we note that because a single centreline symmetric bubble must also have
fore-and-aft symmetry we can, without loss of generality, set ν2 = −ν1 = ν, where

0 < ν < 1, so that from (3.5) and (3.6) we have a0 = 0 and a1 =
√

1− ν2. Using these
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facts in (3.8) with N = k = 1, one then finds

y(s) = −
√

1− ν2

π

∫ s

−ν
t dt

(1− t2)√ν2 − t2 , (3.11)

which upon integration becomes

y(s) =
1

π
tan−1

√
ν2 − s2
1− ν2

. (3.12)

Eliminating the parameter s from (3.10) and (3.12) then finally gives

x =
1

π
tanh−1{sin2(πλ)− cos2(πλ) tan2(πy)}1/2, (3.13)

where λ is the bubble maximum half-width, being related to our original parameter
by ν = sin πλ. Equation (3.13) is precisely the formula obtained by Taylor & Saffman
(1959). We note in passing that this equation can be more compactly rewritten as

x =
1

π
cosh−1

[cos πy

cos πλ

]
. (3.14)

Next we discuss the case of two bubbles for which there also exists an analytic
solution.

3.3. Pair of bubbles

We now consider the problem of two unequal centreline-symmetric bubbles moving
steadily in a Hele-Shaw cell. In this case, as we will see below, the bubble shapes can
also be written in closed form in terms of elliptic integrals. A preliminary description
of these solutions has been given in an earlier paper by the author (Vasconcelos
2000). Our aim here is to present a complete derivation of such solutions.

Setting N = 2 and k = 1 in (3.7)–(3.9) we find that the first bubble is given by

x1(s) =
1

π
tanh−1 s, (3.15)

y1(s) =
1

π

∫ s

ν1

a+ bt+ ct2

(1− t2)√t(ν1 − t)(ν3 − t)(ν4 − t) dt, (3.16)

where ν1 6 s 6 0. Similarly, for the second bubble (N = k = 2) we have

x2(s) = x0 +
1

π
tanh−1 s, (3.17)

y2(s) = −1

π

∫ s

ν3

a+ bt+ ct2

(1− t2)√t(t− ν1)(t− ν3)(ν4 − t) dt, (3.18)

where ν3 6 s 6 ν4 and the constant x0 is given by

x0 = −1

π

∫ ν3

0

a+ bt+ ct2

(1− t2)√t(t− ν1)(ν3 − t)(ν4 − t) dt, (3.19)

as one readily sees after setting N = k = 2 in (3.9). The coefficients a, b and c above
are determined from the following requirements:

y1(0) = y2(ν4) = 0, (3.20)

a+ b+ c =
√

(1− ν1)(1− ν3)(1− ν4). (3.21)
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The two conditions in (3.20) enforce the bubble centreline symmetry, while (3.21)
corresponds to (3.6). In obtaining the formulas above we have also made use of the
third degree of freedom of Riemann’s theorem and have set ν2 = 0.

The integrals in (3.16), (3.18) and (3.19) can all be expressed in terms of elliptic
integrals (Byrd & Friedman 1971). This requires, however, a lengthy calculation that
we defer to Appendix A. Here we shall simply quote the results, but before doing
that we need to introduce some notation. First we define the function

H(ϕ, u, v, k) = G(ϕ, u, k)− G(ϕ, v, k), (3.22)

where

G(ϕ, n, k) =
√

(1− n)(n− k2)/n

[
Π(ϕ, n, k)− Π(n, k)

K
F(ϕ, k)

]
. (3.23)

Here F(ϕ, k) and Π(ϕ, n, k) are the normal elliptic integrals of first and third kinds,
respectively, with K ≡ K(k) ≡ F(π/2, k) and Π(n, k) ≡ Π(π/2, n, k) being the complete
elliptic integrals of first and third kinds, respectively. In the above we have adopted
Legendre’s notation for the elliptic integrals in which ϕ is the argument, k is called
the modulus, and n is referred to as the parameter (Byrd & Friedman 1971). Next we
note that the function H defined above satisfies the identity

H(ϕ, u, v, k) = H(ψ, r, t, k), (3.24)

where

cotψ = k′ tanϕ, r =
k2 − v
1− v , t =

k2 − u
1− u , (3.25)

with k′ =
√

1− k2 being the so-called complementary modulus. (For a proof, see
Appendix B.)

Now using the result given in (A 27) for the integral appearing in (3.16), we then
find

y1(s) =
1

π
H(ϕ1(s), m, n, k), (3.26)

where

ϕ1(s) = sin−1

√
n− m+ (m+ n− 2)s

n− m− (n+ m− 2mn)s
. (3.27)

Similarly, using (A 28) in (3.18) we obtain for the y-coordinate of the second bubble

y2(s) =
1

π
H(ϕ2(s), p, q, k), (3.28)

where

ϕ2(s) = sin−1

√
p− q + (p+ q)s

2pqs
. (3.29)

Finally, inserting (A 37) into (3.19) one sees that the constant x0 reads simply

x0 =
1

2K
[F(βq, k

′)− F(βp, k
′)], (3.30)

with βq being given by

βq = sin−1

√
q − k2

qk′2
, (3.31)



188 G. L. Vasconcelos

1.0

0.5

0y

–0.5

–1.0
–2.2 –1.2 0.8 1.8

x
–0.2

Figure 6. A pair of centreline-symmetric bubbles with k = 0.46, p = 0.22 and q = 0.5.

and similar expression for βp. The five parameters k2, m, n, p and q introduced above
are of course not all independent. As shown in Appendix A, m and n are related to
p and q, respectively, via the equations

m =
k2(p− 1)

p− k2
, n =

k2(q − 1)

q − k2
. (3.32)

The original parameters ν1, ν3 and ν4 can also be expressed in terms of k, p and q;
see (A 15).

We have thus obtained a three-parameter family of solutions for a pair of centreline-
symmetric bubbles. In describing these solutions we can use either (k, m, n) or (k, p, q)
as our set of free parameters, with these parameters taking values in the ranges

m < n < 0 < k2 < 1 and 0 < k2 < p < q < 1. (3.33)

Passing from one representation to another is accomplished by the identity (3.24). For
example, setting u = m, v = n, r = k2/q and t = k2/p in (3.24) we can express (3.26) in
terms of H(ψ1, k

2/q, k2/p, k), where cotψ1 = k′ tanϕ1. Similarly we can rewrite (3.28)
in terms of H(ψ2, k

2/n, k2/m, k), with cotψ2 = k′ tanϕ2. In figure 6 we show a solution
with k = 0.46, p = 0.22 and q = 0.5.

It is perhaps worth pointing out that in either limit that one of the bubbles shrinks
to zero or that the separation between the two bubbles vanishes (so that they merge
into a single bubble) our two-bubble solution correctly reproduces the Taylor–Saffman
bubble. For example, the latter limit corresponds to taking k → 1 and mn = 1. Using
the special values for F(ϕ, 1) and Π(ϕ,m, 1) one can show that in this limit (3.26)
does indeed give (3.12). We will however spare the reader the mathematical details.

As already mentioned, analytic solutions for a pair of bubbles were presented
(without derivation) by the author in an earlier publication (Vasconcelos 2000). For
the benefit of the reader who may wish to compare these solutions with the one given
above, we note here that the parameters p and q used in the present paper correspond
to k2/q and k2/p, respectively, in the notation of Vasconcelos (2000).

3.4. Finger with bubbles

Notice that if the first bubble in figure 1(a) becomes infinitely elongated, while the
other bubbles remain finite, the resulting configuration corresponds to an advancing
finger with several bubbles moving ahead of the finger tip. Exact solutions for a finger
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with multiple bubbles have been obtained previously by the author (Vasconcelos
1999). Here we wish to point out that these finger-bubble solutions can be viewed as
a particular case of the generic N-bubble solution presented above. In fact, solutions
for a finger with N − 1 bubbles can be obtained by taking the limit γ1 = ν1 = −1 and
ν2 = 0 in the formulas of § 3.1 and performing some additional algebra, the details
of which will not be given here. For a finger with a single bubble, in particular, an
analytic solution in terms of elliptic integrals can be obtained (Vasconcelos 2000) as
a special case of the two-bubble solution described in the preceding subsection.

4. Bubbles with fore-and-aft symmetry
We will now consider the case shown in figure 3 where the bubbles have fore-and-

aft symmetry. First we will present a general solution in integral form for an arbitrary
number N of bubbles and then proceed to discuss the case N = 1 for which there
also exists an analytic solution in terms of elliptic integrals.

4.1. Generic solutions

We begin by considering the conformal mapping W̃ = Σ(ζ). Here the flow domain in
the W̃ -plane is the half-strip −1 < φ̃ < 1, ψ̃ > 0 shown in figure 3(c). The conformal
mapping from the upper half-ζ-plane onto this half-strip is effected by the function

Σ(ζ) = −2

π
cos−1 ζ. (4.1)

Next we turn to the mapping W = Φ(ζ). The domain in the W -plane corresponds
to the half-strip φ < 0, −1 < ψ < 1 with N horizontal slits, as shown in figure 3(b).
This domain can also be viewed as a degenerate polygon and so the corresponding
conformal mapping W = Φ(ζ) can be found from the Schwarz–Christoffel formula:

Φ(ζ) = Φ0 +
iC

π

∫ ζ

ζ0

∏N
j=1(ζ − γj)√

1− ζ2
∏2N

j=1(ζ − νj)1/2
dζ. (4.2)

Here we have used the three degrees of freedom of Riemmann’s mapping theorem
to map ζ = ±1 onto z = ∓i and ζ = ∞ onto z = ∞. As in § 3.1, it is convenient to
expand the numerator in (4.2) and so we write

Φ(ζ) = −i +
2i

π

∫ ζ

−1

∑N
j=0 ajζ

j√
1− ζ2

∏2N
i=1 (ζ − νi)1/2

dζ, (4.3)

where we have chosen ζ0 = −1 so that Φ0 = −i.
The coefficients aj above are determined as follows. First we must have aN = 1,

so that Φ(ζ) will display the appropriate behaviour at infinity: Φ(ζ) ≈ (2i/π) ln ζ as
ζ →∞. (To see that Φ(ζ) must indeed have such behaviour, let ζ = Reiθ , with R � 1
and then notice that as θ varies from θ = 0 to θ = π the imaginary part of Φ(ζ) must
vary by −2.) The other coefficients aj , for j = 0, 1, . . . , N− 1, are determined from the
parameters νj via a procedure similar to that used in § 3.1. Let us then introduce the
quantities Jjk

Jjk =

∫ ν2k

ν2k−1

tj dt√
1− t2∏2N

i=1 |t− νi|1/2
, (4.4)

for j = 0, 1, . . . , N and k = 1, . . . , N. Now, from the requirement of fore-and-aft sym-
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Figure 7. A pair of bubbles with fore-and-aft symmetry. The parameters are ν1 = −0.9,
ν2 = 0.2, ν3 = 0.205 and ν4 = 0.8.

metry it follows that Φ(ν2k−1) = Φ(νk), which in view of (4.3) and (4.4) implies

N∑
j=0

ajJjk = 0, k = 1, 2, . . . , N. (4.5)

Equation (4.5) thus gives a system ofN linear equations for theN unknown coefficients
aj , for j = 0, . . . , N − 1.

The bubble shapes are now readily obtained from (2.22), (2.23), (4.1) and (4.3). We
then find that the interface Ck for the kth bubble is given by the equations

xk(s) =
(−1)N+k+1

π

∫ s

ν2k−1

∑N
j=0 ajt

n

√
1− t2∏2N

j=1 |t− νj |1/2
dt, (4.6)

yk(s) = yk0 +
1

π
cos−1 s, (4.7)

where s ∈ Ik , with Ik as defined in (2.20) and

yk0 =
(−1)N+1

π

k−1∑
l=0

(−1)l
∫ ν2l+1

ν2l

∑N
j=0 ajt

n

√
1− t2∏2N

j=1 |t− νj |1/2
dt. (4.8)

In (4.8) we have, for conciseness, introduced the notation ν0 = −1.
Equations (4.6)–(4.8) thus give a 2N-parameter family of solutions for N bubbles

with fore-and-aft symmetry moving ‘side-by-side’ in a Hele-Shaw channel. From a
physical standpoint, the 2N free-parameters correspond, of course, to the bubble sizes
and the vertical separations between adjacent bubbles. An example of a solution
for N = 2 is shown in figure 7. Note, in particular, that if the intervals Ik are
symmetrically placed about ζ = 0, then the overall solution will be symmetrical about
the channel centreline. In this case, when there is an odd number of bubbles the
bubble at the centre will itself be centreline-symmetric, while each off-centre bubble
will have a corresponding mirror image. A solution for such a case with N = 3
is given in figure 8. On the other hand, if there is an even number N of bubbles
with fore-and-aft symmetry in a centreline-symmetric flow, then the problem can be
reduced to that of N/2 bubbles in a channel with one half of the original width.
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Figure 8. Three bubbles with fore-and-aft symmetry in a flow symmetric about the channel
centreline. Here ν4 = −ν1 = 0.95 and ν3 = −ν2 = 0.001.

4.2. Single asymmetrical bubble

For N = 1 the solution of the preceding subsection describes a single bubble that
has fore-and-aft symmetry but that in general is not symmetrical about the channel
centreline. Exact solutions for such bubbles were first obtained by Tanveer (1987)
using conformal mappings between doubly connected domains. Our formalism has
however the advantage of being somewhat simpler for it involves only conformal
mappings between simply connected regions. Moreover, our method yields a closed-
form solution for the bubble in terms of elliptic integrals, as shown below.

Let us first compute the bubble x-coordinate. Setting N = k = 1 in equation (4.6)
yields

x(s) =
1

π

∫ s

ν1

b− t√
(1− t2)(t− ν1)(ν2 − t)

dt, (4.9)

where b = −a0 and −1 < ν1 6 s 6 ν2 < 1. As in § 3.3, the integral above can be
written in terms of elliptic integrals (Byrd & Friedman 1971). The final result is

x(s) =
1

π
G(ϕ(s), n, k), (4.10)

where the function G(ϕ, n, k) is as defined in (3.23), the argument ϕ is given by

ϕ(s) = sin−1

√
2n− k2(1− s)
nk2(1− s) , (4.11)

and the modulus k and the parameter n satisfy

0 < n < k2 < 1. (4.12)

In terms of k and n the original parameters ν1 and ν2 read

ν1 = 1− 2n

k2
, ν2 = 1− 2nk′2

k2(1− n) . (4.13)

Now we turn to the bubble y-coordinate. After taking N = k = 1 in (4.7) and (4.8)
one finds

y(s) = y0 +
1

π
cos−1 s, (4.14)
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where

y0 = −1

π

∫ ν1

−1

b− t√
(1− t2)(t− ν1)(t− ν2)

dt. (4.15)

This integral can also be expressed in terms of elliptic integrals and after some tedious
algebra one obtains

y0 = −F(β, k)

K(k)
, (4.16)

where

β = sin−1

√
k2 − n
k2(1− n) . (4.17)

Equations (4.10), (4.11), (4.14) and (4.16) thus give a two-parameter family of
exact solutions for a single bubble with fore-and-aft symmetry but non-symmetric (in
general) about the channel centreline. Note, in particular, that in the event that the
bubble becomes symmetrical about the centreline the solution above should reproduce
the Taylor–Saffman bubble given in (3.13). Using the fact that the symmetric case
corresponds to n = 1 − k′ and resorting to certain relations between the elliptic
integrals, one can show that the solution above does indeed reproduce (3.13). We
remark, however, that it is easier to rederive (3.13) by first setting b = 0 and
ν2 = −ν1 = ν in (4.9), performing the integration, and then combining the result with
(4.14).

4.3. Multiple fingers

If in figure 1(b) we consider the limit in which the vertical axis of symmetry recedes to
−∞, then all the bubbles become infinitely elongated and we arrive at a situation where
several fingers penetrate simultaneously into a Hele-Shaw channel. Exact solutions
for multiple fingers in a Hele-Shaw cell at zero surface tension have recently been
reported by Vasconcelos (1998, 2001). Here we note that these multifinger solutions
can be obtained as a particular case of the generic bubble solution given in § 4.1 in
the limit that ν1 → −1, ν2N → 1 and ν2j → ν2j+1 for j = 1, . . . , N − 1. In such case,
the square-root branch points in (4.2) merge pairwise into single poles so that Φ(ζ)
will be given as a sum of logarithmic terms. Carrying out the subsequent calculation,
one then obtains a multifinger solution where the x-coordinate along each of the
fingers can be written explicitly as a sum of logarithmic terms in the corresponding
y-coordinate, as found previously by Vasconcelos (1998).

5. Conclusions
We have presented exact solutions for the problem of N bubbles moving with a

constant velocity in a Hele-Shaw channel when surface tension is neglected. Depending
upon the symmetry displayed by the bubbles these solutions can be classified into two
groups: (i) solutions where the bubbles are symmetric about the channel centreline
and (ii) solutions in which the bubbles have fore-and-aft symmetry. Our solutions
have been constructed via conformal mapping techniques and are in general written
in integral form. We have however found solutions in closed form in terms of elliptic
integrals for the following two important cases: (i) a pair of centreline-symmetric
bubbles and (ii) a single bubble with fore-and-aft symmetry but non-symmetric about
the centreline.

Although the solutions presented here are for the idealized case of zero surface
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tension, they are nevertheless of physical significance. For instance, it has been
found (Vasconcelos 2000) that our two-bubble solution with zero surface tension
describes remarkably well shapes observed in the experiments conducted by Ikeda &
Maxworthy (1990) on the problem of a large bubble with a small one attached to its
nose. The existence of this analytic solution for a pair of bubbles thus opens up the
prospects for further studies concerning the selection problem in this case. Moreover,
the wealth of bubble solutions described in the present paper may explain, in part,
the plethora of shapes observed by Maxworthy (1986) in his experiment on rising
bubbles in a Hele-Shaw cell. Some of those shapes do indeed bear some resemblance
to solutions presented here.

The solutions reported in the present paper are rather general in the sense that all
previously known steady solutions in an unbounded channel geometry are particular
cases of our solutions. An attempt is now being made to find even more general
solutions by removing the symmetry requirement imposed on the bubbles. The prob-
lem in this case becomes much harder for now the fluid domain can no longer be
reduced to a simply connected region. Our method of solution still applies here, in a
formal sense, but the construction of the actual conformal mappings Φ(ζ) and Σ(ζ)
seems to be a difficult task. Another possible generalization is to consider the case of
periodic solutions with several bubbles per period cell. A class of such solutions for
multiple centreline-symmetric bubbles has already been obtained (Vasconcelos 1994)
that generalizes the solution found by Burgess & Tanveer (1991) for a periodic array
of identical bubbles. We are now working out an extension of these periodic solutions
that should, in the limit that the cell period becomes infinitely large, reproduce our
N-bubble solution given in § 3.1. We are also investigating periodic solutions having
multiple bubbles with fore-and-aft symmetry per unit cell.

As a concluding remark, we note that up to this date the only known time-
dependent solutions in the rectangular Hele-Shaw cell are for the case in which the
viscous fluid occupies a simply connected region. (These solutions describe a single
interface that asymptotically evolves to one or more fingers.) We are thus currently
investigating the existence of time-evolving solutions for bubbles. If such solutions
do exist, one would thus expect to find a class of time-dependent solutions that will
asymptotically approach the steady bubble solutions reported in the present paper.
We hope to be able to report some progress on this difficult problem in the near
future.

I would like to acknowledge Leo P. Kadanoff for introducing me, several years
ago, to the beautiful subject of Hele-Shaw flows. This work was supported in part by
FINEP, CNPq, and PRONEX under grant number 76.97.1004.00.

Appendix A. Elliptic integrals
We first consider the integral

I1(s) =

∫ s

ν1

a+ bt+ ct2

(1− t2)√−t(t− ν1)(ν3 − t)(ν4 − t) dt, (A 1)

where −1 < ν1 < s 6 0 < ν3 < ν4 < 1 and the coefficients a, b and c satisfy the con-
dition

a+ b+ c =
√

(1− ν1)(1− ν3)(1− ν4). (A 2)
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The integral above can be expressed in terms of elliptic integrals (Byrd & Friedman
1971). After some simplification one then finds

I1(s) = Ank[B1F(ϕ1(s), k) + B2Π(ϕ1(s), m, k)−Π(ϕ1(s), n, k)], (A 3)

where

ϕ1(s) = sin−1

√
ν4(s− ν1)

ν1(s− ν4)
, (A 4)

k2 =
ν1(ν3 − ν4)

ν4(ν3 − ν1)
, m =

ν1(1 + ν4)

ν4(1 + ν1)
, n =

ν1(1− ν4)

ν4(1− ν1)
, (A 5)

B1 =
1− ν1

ν4 − ν1

[
1 +

1− ν4

1 + ν4

X − (1− ν4)Y

]
, B2 =

(1− ν1)(1− ν4)

(1 + ν1)(1 + ν4)
X, (A 6)

with the coefficient Ank in (A 3) being defined as

Ank =
√

(1− n)(n− k2)/n. (A 7)

Here we have for convenience introduced the notation X = (a − b + c)/(a + b + c)
and Y = 2a/(a+ b+ c).

The second integral of interest is

I2(s) =

∫ s

ν3

a+ bt+ ct2

(1− t2)√t(t− ν1)(t− ν3)(ν4 − t) dt, (A 8)

where now ν3 < s 6 ν4. In this case, we find

I2(s) = Aqk[C1F(ϕ2(s), k)− C2Π(ϕ2(s), p, k) +Π(ϕ2(s), q, k)], (A 9)

where Aqk is as defined in (A 7) and

ϕ2(s) = sin−1

√
ν4(s− ν3)

s(ν4 − ν3)
, (A 10)

p =
ν4 − ν3

ν4(1 + ν3)
, q =

ν4 − ν3

ν4(1− ν3)
, (A 11)

C1 =
ν3 − 1

ν3

[1 +X − Y ], C2 =
1− ν3

1 + ν3

X. (A 12)

Among the five parameters k, m, n, p and q introduced above, of course only three
of them are independent (corresponding to the three original parameters νi). Indeed,
from the definitions above one easily finds that the parameters m and n are related
to p and q, respectively, via the equations

m =
k2(p− 1)

p− k2
, n =

k2(q − 1)

q − k2
. (A 13)

We can thus use either k, m and n or k, p and q as our set of independent parameters,
with these parameters ranging over the intervals

m < n < 0 < k2 < 1 and 0 < k2 < p < q < 1, (A 14)

as can be easily verified from the definitions above. The original parameters νi can
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also be expressed in terms of the new parameters and here one finds

ν1 =
k2(q − p)

k2(q + p)− 2pq
, ν3 =

q − p
q + p

, ν4 =
q − p

p+ q − 2pq
, (A 15)

which in view of (A 13) can alternatively be written in terms of k, m, and n. Using
(A 15) in (A 4) and (A 10), we can rewrite the arguments ϕ1 and ϕ2 in terms of the
new parameters:

ϕ1(s) = sin−1

√
n− m+ (m+ n− 2)s

n− m− (n+ m− 2mn)s
, (A 16)

ϕ2(s) = sin−1

√
p− q + (p+ q)s

2pqs
. (A 17)

We now require that I1(0) = I2(ν4) = 0, so as to ensure centreline symmetry; see
(3.20). In view of (A 3) and (A 9) these requirements imply that

B1K + B2Π(m, k)−Π(n, k) = 0, (A 18)

C1K − C2Π(p, k) +Π(q, k) = 0. (A 19)

This gives a system of two linear equations that can be easily solved for the two
unknowns X and Y . Despite this apparent simplicity, the expressions obtained for X
and Y after a direct solution of the system above are very cumbersome and a great
deal of manipulation is required to bring them into a more manageable form. For
example, after tedious algebra one finds that X can be conveniently written as

X =
q(1− p)
p(1− q)

[
(1− n)Π(n, k) + (1− q)Π(q, k)−K
(1− m)Π(m, k) + (1− p)Π(p, k)−K

]
. (A 20)

This expression can be further simplified if we note the identity

(1− n)Π(n, k) + (1− q)Π(q, k) = K +
π

2

1− q
Aqk

, (A 21)

which is valid whenever n and q are related as in (A 13). (A similar expression holds,
of course, if we replace n and q with m and p, respectively.) Using (A 21) in (A 20) we
then finally obtain

X =
qApk

pAqk
. (A 22)

Similarly one finds that the solution for Y can be written as

Y = 1 +
qApk

Aqk
+

q − p
2pAqkK

[AqkΠ(q, k)− ApkΠ(p, k)]. (A 23)

Next we note that in view of (A 18) and (A 19) equations (A 3) and (A 9) can be
rewritten as

I1 =
Ank

Amk
B2G(ϕ1, m, k)− G(ϕ1, n, k), (A 24)

I2 = G(ϕ2, q, k)− Aqk

Apk
C2G(ϕ2, p, k), (A 25)

where the function G(ϕ, n, k) is as defined in (3.23). (Here the dependence on s has
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been omitted for brevity.) Now using (A 22) together with (A 6) and (A 12) we find
that the coefficients B2 and C2 are given by

B2 =
Amk

Ank
, C2 =

Apk

Aqk
, (A 26)

so that after inserting these expressions into (A 24) and (A 25) we finally obtain

I1 = H(ϕ1, m, n, k), (A 27)

I2 = H(ϕ2, q, p, k), (A 28)

where the function H(ϕ, u, v, k) has been defined in (3.22).
The last integral we need to consider is

I3 =

∫ ν3

0

a+ bt+ ct2

(1− t2)√t(t− ν1)(ν3 − t)(ν4 − t) dt, (A 29)

which appears in the definition of the constant x0 given in (3.19). In terms of elliptic
integrals the above integral reads

I3 = D[e1K
′ + e2Π(u, k′)− e3Π(v, k′)], (A 30)

where

D =
a+ b+ c√
ν4(ν3 − ν1)

, u =
ν3(1− ν1)

ν3 − ν1

, v =
ν3(1 + ν1)

ν3 − ν1

(A 31)

e1 =
1

1− ν1

+
X

1 + ν1

− Y , e2 =
ν1

1− ν1

, e3 =
ν1X

1 + ν1

. (A 32)

In (A 30) we have used the standard notation K ′ ≡ K(k′). Using the expressions for
X and Y given in (A 22) and (A 23), one finds after some simplification that I3 can
be written as

I3 =
Apk

(p− k2)K
[k2KK ′ − k2KΠ(v, k′)− (k2 − p)K ′Π(p, k)]

− Aqk

(q − k2)K
[k2KK ′ − k2KΠ(u, k′)− (k2 − q)K ′Π(q, k)]. (A 33)

This expression can be simplified further if we note that u is related to q and k2 via

u =
q − k2

q
, (A 34)

in which case we have the identity (Byrd & Friedman 1971)

k2KK ′ − k2KΠ(u, k′)− (k2 − q)K ′Π(q, k) =
π

2

q − k2

Aqk
F(βq, k

′), (A 35)

where

βq = sin−1

√
q − k2

qk′2
. (A 36)

(Similar expressions hold if we replace u and q with v and p, respectively.) Using
(A 35) and the similar identity in terms of v and p, one then immediately sees that
(A 33) becomes simply

I3 =
π

2K
[F(βp, k

′)− F(βq, k
′)]. (A 37)
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Appendix B
Here we shall prove formula (3.24) for the function H(ϕ,m, n, k). To do this, we will

need several identities involving elliptic integrals (Byrd & Friedman 1971):

Π(q, k) +Π(k2/q, k) = K +
π

2

1

Aqk
, (B 1)

Π(ϕ, q, k) +Π(ϕ, k2/q, k) = F(ϕ, k) +
1

Aqk
tan−1

[
Aqk tanϕ√
1− k2 sin2 ϕ

]
, (B 2)

Π(ϕ, q, k) +Π(ψ, q, k) = Π(q, k)− 1

Aqk
tan−1

[
q − k2

Aqk
sinϕ sinψ

]
, (B 3)

(1− n)Π(ϕ, n, k) + (1− q)Π(ϕ, q, k) = F(ϕ, k)

+
1− q
Aqk

{
tan−1

[
k′2 tanϕ

Aqk
√

1− k2 sin2 ϕ

]
− tan−1

[
(q − k2) sinϕ cosϕ

Aqk
√

1− k2 sin2 ϕ

]}
, (B 4)

where in (B 3) we have cotψ = k′ tanϕ and in (B 4) n is as given in (A 13). Using
(A 21) and (B 1)–(B 4) we can, after a lengthy algebra, establish the relation

G(ϕ, n, k) + G(ψ, k2/q, k) =
1

2
− π

2K
[F(ϕ, k)− F(ψ, k)]. (B 5)

From this last equation (and the similar expression with m and p replacing n and q,
respectively), we obtain the identity

H(ϕ,m, n, k) = H(ψ, k2/q, k2/p, k), (B 6)

with m and n given by (A 13) and cotψ = k′ tanϕ. This is precisely the relation (3.24)
if we identify m = u, n = v, r = k2/q and t = k2/p.
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